Proteomic Analysis Reveals the Role of Synaptic Vesicle Cycling in Sustaining the Suprachiasmatic Circadian Clock

نویسندگان

  • Michael J. Deery
  • Elizabeth S. Maywood
  • Johanna E. Chesham
  • Martin Sládek
  • Natasha A. Karp
  • Edward W. Green
  • Philip D. Charles
  • Akhilesh B. Reddy
  • Charalambos P. Kyriacou
  • Kathryn S. Lilley
  • Michael H. Hastings
چکیده

The central circadian pacemaker of the suprachiasmatic nucleus (SCN) is characterized as a series of transcriptional/posttranslational feedback loops. How this molecular mechanism coordinates daily rhythms in the SCN and hence the organism is poorly understood. We conducted the first systematic exploration of the "circadian intracellular proteome" of the SCN and revealed that approximately 13% of soluble proteins are subject to circadian regulation. Many of these proteins have underlying nonrhythmic mRNAs, so they have not previously been noted as circadian. Circadian proteins of the SCN include rate-limiting factors in metabolism, protein trafficking, and, intriguingly, synaptic vesicle recycling. We investigated the role of this clock-regulated pathway by treating organotypic cultures of SCN with botulinum toxin A or dynasore to block exocytosis and endocytosis. These manipulations of synaptic vesicle recycling compromised circadian gene expression, both across the SCN as a circuit and within individual SCN neurons. These findings reveal how basic cellular processes within the SCN are subject to circadian regulation and how disruption of these processes interferes with SCN cellular pacemaking. Specifically, we highlight synaptic vesicle cycling as a novel point of clock cell regulation in mammals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptophysin is involved in resetting of the mammalian circadian clock

BACKGROUND Mammals can adapt to changing light/dark conditions by advancing or delaying their circadian clock phase. Light pulses evoke changes in gene expression and neuronal activity in the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system. Alterations in neuronal activity are partially mediated by changes in synaptic vesicle (SV) fusion at the presynaptic membrane, ...

متن کامل

Differential Sorting of the Vesicular Glutamate Transporter 1 into a Defined Vesicular Pool Is Regulated by Light Signaling Involving the Clock Gene Period

Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy.Using synaptic vesicles prepared fromwhole brain ...

متن کامل

Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2.

Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brai...

متن کامل

In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism

Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes, orchestrating metabolism and physiology. Recent evidence indicates that post-transcriptional and post-translational mechanisms play essential roles in modulating temporal gene expression for proper circadian function, particularly for the molecular mechanism of the clock. Due to technical l...

متن کامل

The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes

The suprachiasmatic nucleus (SCN) acts as the central clock to coordinate circadian oscillations in mammalian behavior, physiology and gene expression. Despite our knowledge of the circadian transcriptome of the SCN, how it impacts genome-wide protein expression is not well understood. Here, we interrogated the murine SCN proteome across the circadian cycle using SILAC-based quantitative mass s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009